Discrete Lawvere theories and computational effects

نویسندگان

  • Martin Hyland
  • John Power
چکیده

Countable Lawvere theories model computational effects such as exceptions, side-effects, interactive input/output, nondeterminism and probabilistic nondeterminism. The category of countable Lawvere theories has sums, tensors, and distributive tensors, modelling natural combinations of such effects. It is also closed under taking images. Enrichment in a category such as Cpo allows one to extend this modelling of computational effects to account for partiality and recursion. Sum and tensor extend to enriched countable Lawvere theories, but distributive tensor and image do not. So here we introduce discrete countable enriched Lawvere theories in order to allow natural definitions and accounts of distributive tensor and image. A discrete countable enriched Lawvere theory is, in a sense we make precise, an enriched Lawvere theory with discrete arities. We show that they include all our leading examples of computational effects and are closed under sum and tensor. And we develop notions of enriched operad and enriched multicategory to support the definition. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Freyd categories are Enriched Lawvere Theories

Lawvere theories provide a categorical formulation of the algebraic theories from universal algebra. Freyd categories are categorical models of first-order effectful programming languages. The notion of sound limit doctrine has been used to classify accessible categories. We provide a definition of Lawvere theory that is enriched in a closed category that is locally presentable with respect to ...

متن کامل

The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads

Lawvere theories and monads have been the two main category theoretic formulations of universal algebra, Lawvere theories arising in 1963 and the connection with monads being established a few years later. Monads, although mathematically the less direct and less malleable formulation, rapidly gained precedence. A generation later, the definition of monad began to appear extensively in theoretic...

متن کامل

Gabriel-Ulmer duality and Lawvere theories enriched over a general base

Motivated by the search for a body of mathematical theory to support the semantics of computational effects, we first recall the relationship between Lawvere theories and monads on Set. We generalise that relationship from Set to an arbitrary locally presentable category such as Poset, ωCpo, or functor categories such as [Inj, Set] or [Inj, ωCpo]. That involves allowing the arities of Lawvere t...

متن کامل

Combining computational effects: commutativity and sum

We begin to develop a unified account of modularity for computational effects. We use the notion of enriched Lawvere theory, together with its relationship with strong monads, to reformulate Moggi’s paradigm for modelling computational effects; we emphasise the importance here of the operations that induce computational effects. Effects qua theories are then combined by appropriate bifunctors (...

متن کامل

Segal Condition Meets Computational Effects

Every finitary monad T on the category of sets is described by an algebraic theory whose n-ary operations are the elements of the free algebra Tn generated by n letters. This canonical presentation of the monad (called its Lawvere theory) offers a precious guideline in the search for an intuitive presentation of the monad by generators and relations. Hence, much work has been devoted to extend ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 366  شماره 

صفحات  -

تاریخ انتشار 2006